Henry L. Pierce Laboratory Seminar Series

Wednesday, March 22, 2017 - 16:00 to 17:00

This talk presents inference, control, and game-theoretic algorithms developed to improve traffic flow in transportation networks. First,
traffic estimation algorithms using crowd-sourced mobile data will be presented. These rely on applications of convex optimization to
inverse modeling problems involving partial differential equations (PDEs). The implementation of these algorithms on mobile phones increase the accuracy of traffic information. Second, the talk presents
algorithms to control transportation infrastructure assets (metering lights, traffic lights in the arterial networks, variable speed limits etc.). These algorithms rely on adjoint-based optimization of PDEs in discretized form. Finally, we investigate disruptions in demand due to the rapid expansion of the use of ??????selfish routing?????? apps. These disruptions cause congestion and make traditional approaches of traffic management less effective. Game theoretic approaches to demand modeling will be presented. These models encompass heterogeneous users (some using routing information, some not) that share the same network and compete for the same commodity
(capacity). Results will be presented for static loading, based on Nash-Stackelberg games, and in the context of repeated games, to account for the fact that routing algorithms learn the dynamics of the system over time when users change their behavior.

Presented by

Professor Alexandre Bayen, Electrical Engineering and Computer Science and Civil and Environmental Engineering, UC Berkeley
Location: 1-131


Latoya Oliver

Contact email